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;everal new VLSI layouts for the_ shuffle-exchange graph. These include
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exchange graph, and Lr.4 ( s fl/si PC N)

2) several practical layouts for small siuffle-ex'change graphs.
The new layouts require substantially less area than previously known layouts

and can serve as the basis for designing large scale shuffle-exchange chips.

In the second part of the thesis, we develop general methods for proving lower
bounds on the layout area, crossing number, bisection width and maximum edge
length YLSI networks. Among other things, we use these methods to find

an N-node planar graph which has layout area O(NlogN) and maximum
edge length O(N 1 2/Iog1"2N)

2) an N-node graph with an O(Nl/2)-separator which has layout area
O(Niog2N) and maximum edge length O(lf/'2logN/IloglogN), and

3) an N-node graph with an O(Na)-separator (for a>/2) which has maximum
edge length O(Na).

The area results indicate that some graphs with OPI)-separators (and, in
particular, some planar graphs) do not have linear-area layouts, thus disproving a
popular conjecture. The edge length bounds indicate that the layouts of some
networks must have very long wires (possibly as long as the width of the layout).
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INTRODUCTION

The recent engineering advances in Very Large Scale Integrated (VLSI) circuitry

have made it possible to wire tens of thousands of transistors onto a single chip. In
the near future, it is expected that fabrication of chips containing millions of
transistors will be commonplace [MC80]. In order that this massive computational
resource be efficiently utilized, theoretical researchers have been actively trying to

answer such questions such as:

1) "What is a good model for VLSI chip design and computation?,"

2) "What communications networks can best perform important operations
such as sorting, matrix multiplication and discrete Fourier transform?" and

3) "What is the best method of laying out a network on a chip?."

Several models have been proposed for VLSI computation [T80,LS81,CM81].
The most widely accepted is due to Thompson and is known as the Thompson

model [T79,T80]. Thompson's model of a VLSI chip is quite simple. The chip is
presumed to consist of a grid of vertical and horizontal tracks which are spaced
apart by unit intervals. Processors are viewed as points and are located only at the
intersection of grid tracks. Wires are routed through the tracks in order to connect
pairs of processors. Although a wire in a horizontal track is allowed to cross a wire
in a vertical track, pairs of wires are not allowed to overlap for any distance (i.e., in
they cannot overlap in the same track). Further, wires are not allowed to overlap
processors to which they are not linked. As an example, we have drawn a
Thompson model layout of a 4-processor network in Figure 1.

Figure 1: A Thompson model layoui 9f a 4-processor network in
wihich each processor is linked to every other processor.
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Much has also been accomplished in the way of finding good communications

networks for VLSI. For example, the complete binary tree [MC80], the 2-

dimensional mesh [TK77,KL78,MC80], the cube-connected-cycles graph [PV79

and the shuffle-exchange graph [S71,L75,L76,NS79,P80,S80,SR80a,T79,T80 are all

known to be capable of performing a wide .ange of operations. The shuffle-

exchange graph, in particular, is an incredibly powerful and efficient

communications network. Among other things, it can be used to compute discrete
Fourier transforms, multiply matrices, sort lists and evaluate polynomials. Except

for sorting (which requires O(log2N) time), these operations require no more than
logarithmic time and constant space per processor. This is exponentially faster than

the running times of the corresponding sequential algorithms and the
corresponding parallel algorithms on networks such as the 2-dimensional mesh.
As, in addition, the processors required for these operations are quite simple, the
shuffle-exchange network is very well suited for VLSI implementation on a chip.

The shuffle-exchange graph comes in various sizes. In particular, there is an
N-node shuffle-exchange graph for ever)' N which is a power of two. Each node of
the (N= 2)-node shuffle-exchange graph is associated with a unique k-bit binary
string ak.... ao.Two nodes w and w' are linked via a shuffle edge if w' is a left
or right cyclic shift of w (i.e., if w = ak.-... a0 and w' = ak.2 .. aak..I Or
w = ao... ak-la) , respectively). Two nodes w and w' are linked via an
exchange edge if w and w' differ only in the last bit (i.e., if w = ak.1. .. a1O and

w = ak.1... all or vice-versa). As an example, we have drawn the 8-node
shuffle-exchange graph in Figure 2. Note that the shuffle edges are drawn with
solid lines while the exchange edges are drawn with dashed lines. We shall follow

this convention throughout the thesis.

100 101

----
000 001 110 ill

010 011

Figure 2: The 8-node shuffle-exchange grapiL
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The third question of interest to VLSI researchers ("What is the best method of
laying out a network on a chip?") has proved to be, by far, the most difficult. It is
also the subject of this thesis. In order to answer the question for a particular
network, we must do the following three things:

1) decide what it means for a layout to be "good,"

2) find a "good" layout for the network, and

3) prove that the layout is as "good" as possible.

Most people agree that a "good" layout is one which does not require much
area. This is quite reasonable since small layouts are easier to wire on a chip, cost
less and have far higher yields than layouts with larger amounts of area. Recently,
there has also been interest in designing layouts with short wires. Although wire
length considerations are not as important as area considerations, it is possible that
layouts with long wires may be less efficient and run slower (due to longer
transmission times) than layouts with shorter wires. Both quantities are easily
expressed in terms of the Thompson model, which is nice from a mathematical
point of view. For example, the layout area of a network is the minimum amount
of area required to lay out the network in the Thompson model. (The area of a
layout in the Thompson model is defined to be the product of the number of
vertical tracks and the number of horizontal tracks which contain a processor or
wire segment of the layout.) Similarly, the maximum edge length of a network is
the minimum amount of wire which is needed to embed the longest edge in any
Thompson model layout of the network.

Good layouts are known for several communications networks; including the
complete binary tree [MR79,PRS81,BL81], the 2-dimensional mesh and the cube-
connected-cycles graph [PV79]. The known layouts for the shuffle-exchange graph,
however, are not very good. Thompson IT801 was the first to find a nontrivial
layout for the shuffle-exchange graph. In particular, he found an O(N 2/log t'2N)-

area layout of the N-node shuffle-exchange graph. He also showed that any layout
for the N-node shuffle-exchange graph must have at least Q(N 2 /log2N) area. Hoey
and Leiserson [HL80] improved the upper bound by finding an O(N 2/ogN)-area
layout for the N-node shuffle-exchange graph. Neither Thompson's nor Hoey and
Leiserson's layouts are practical, however, and neither meets Thompson's
asymptotic lower bound.

4



In Part I of the thesis, we find good layouts for the shuffle-exchange graph. In

particular, we describe an asymptotically optimal O(N2 /og 2N)-area layout for the

N-node shuffle-exchange graph. Although the layout is not optimal For small

values of A'. we show how it can be modified in order to produce good layouts for

small shuffle-exchange graphs. As these layouts are practical, it should now be

possible to build a shuffle-exchange chip.

Finally, we are left with the task of proving that a layout which appears to be
good is, in fact, optimal. Although Thompson T79,T80], Vuillcmin [V80] and

.ipton and Sedgewick [1"S811 have all shown how to prove area lower bounds for

certain computationally useful networks (such as the shuffle-exchange graph), it is

not known how to prove sLIch lower bounds in general. For example, no nontrivial

lower bounds have been found for the class of graphs which have O(N'/ 2)-

separators. (This class includes the very important class of planar graphs.) Nor

have any methods been discovered for proving nontrivial lower bounds on the

maximum edge length of a network.

In Part 11 of the thesis, we describe several techniques for proving good layout

area and maximum edge length lower bounds. In particular, we concentrate on

finding good lower bounds for the crossing number, wire area and maximum edge

crossing of a network. The crossing number of a graph is the minimum number of

pairs of edges which must cross in an ' drawing of the graph in the plane. The

maximum edge crossing of a graph is the largest number of edges which must be

crossed by some edge in any drawing of the graph. The wire area of a network is

simrly the minimum amount of wire which must be used to embed the network in

the Thompson model. It is clear that for any network,

crossing number < wire area < layout area

and also that

maxinum edge crossing < maximum edge length.

In addition, the crossing number, wire area and maximum edge crossing are

worth minimizing independent of layout area and maximum edge length

considerations. This is due to the fact that

1) chips with a large number of wire crossings (and, in particular, those with

wires which cross many other wires) have substantially nmore problems with

5
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capacitive coupling (i.e.. interference between overlapping wires) than do
chips with fewer crossings, and

2) chips with high wire area cost more and experience lower yields than do
chips with lesser wire area.

Unfortunately, the results of Part II indicate that the crossing number and wire
,, area are usually as large (up to a constant factor) as the layout area. In addition,

the maximum edge crossing is often nearly as large as the side length of the chip.
More importantly, however, crossing number and wire area arguments can be used
to prove better lower bounds on the layout area and maximum edge length than
were possible with existing techniques. In particular, we will use such arguments

* to find

1) an N-node planar graph which has layout area O(NlogN) and maximum
edge length O(Nl/ 2/Iog1 ' 2N),

2) an N-node graph with an O(N"2)-separator which has layout area
O(Nlog2N) and maximum edge length O(N1"21ogN/loglogN), and

3) an N-node graph with an O(N 0 )-separator (for a>/2) which has maximum
edge length O(Na).

The area results indicate that not all graphs with O(Nl/)-separators (and, in
particular, not all planar graphs) can be laid out in linear area, thus disproving- a
popular conjecture. The edge length bounds indicate that layouts of certain
networks must have some very long wires (possibly even as long as the side length
of the layout). Taken together, these results answer all of the previously open
questions concerning layout area and maximum edge length of VLSI networks
with known separators.

6
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CHAPTER 1

REVIEW OF KNOWN LAYOUTS

In this chapter, we review the known layouts of the shuffle-exchange graph. In
section 1.1, we describe Thompson's [T80] straightforward O(N/logJ12N)-area
layout. This is followed in section 1.2 by a detailed description of Hoey and
Leiserson's complex plane diagram. The complex plane diagram is very helpful in
finding good layouts for the shuffle-exchange graph. For example, Hoey and
Leiserson [HL80] have used the diagram to find an O(N 2/logN)-area layout for the
N-node shuffle-exchange graph. In Chapter 2, we will use the diagram to find a
variety of layouts for the N-node shuffle-exchange graph including one which
requires only O(N2/log312N) area. (Such a layout has also recently been found
independently by Steinberg and Rodeh ISR80b].) The complex plane diagram will
also be used in Chapter 4 as an aide in the construction of good practical layouts
for small shuffle-exchange graphs.

1.1 Thompson's Layout

Thompson was the first to investigate VLSI layouts for the shuffle-exchange
graph. In his thesis [T80], he showed that any layout for the N-node shuffle-
exchange graph requires at least 1(N 2/Iog 2N) area. (We reprove this fact using
crossing number arguments in Part II of the thesis.) In addition, he described a
layout requiring only O(N2/logl 2N) area. In what follows, we present
Thompson's layout and give a simple proof that it does, in fact, require just
O(N 2/Iog'l 2N) area.

Given any k-bit string w, define the size of w to be the number of 1-bits it
contains. For example, the size of 10110 is 3. Thompson's idea was to lay out the
N= 2 k nodes of the shuffle-exchange graph on a straight line in order of
nondecreasing size. It is easily seen that shuffle edges link nodes which have the
same size and that exchange edges link nodes which have sizes differing by one.
Thus the edges of such a layout are relatively short. In particular, the number of
horizontal tracks needed to embed all of the edges is at most O( max R) where

8is"

p -
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B. is the number of nodes of size s. This is due to the fact that at most

O(Br-,+ Bs+ Bs, 1) edges can cross any vertical cut of the layout which is located

between a pair of nodes of size s.

It is easy to show that Bs = C(k,s) for each s where

C(k,s) = k!/[s!(k-s)!l

is the well-known function for binomial coefficients. It is also well-known that

C(k,s) achieves its maximum value at s= k/2 for any k. Using standard asymptotic
analysis, it is easily shown that C(k,k/2) - O(2k/k/ 2 ) for large k. (For a good

review of such techniques, see Bender and Orszag's book [B0781.) Thus

Thompson's layout requires only O(N/og12N) horizontal tracks. Since at most 3

vertical tracks are needed to embed the vertical portions of the edges incident to

any given node, we can conclude that Thompson's layout has area O(N 2/ogJ1 2N).

1.2 Hoey and Leiserson's Complex Plane Diagram

In [HL80], Hoey and Leiserson observed that there is a very natural embedding

of the shuffle-exchange graph in the complex plane. In what follows, we describe
this embedding (henceforth referred to as the complex plane diagram) and point
out some of its more important properties. In addition, we give a brief description

of the method used by Hoey and Leiserson to transform the diagram into an

O(N2/logN)-area layout for the N-node shuffle-exchange graph.

1.2.1 Definition

Let Sk = e2wi/k denote the kth primitive root of unity. Given any k-bit binary
string w = ak.l ...ao , let p(w) be the map which sends w to the point

p(w) =ak. kk +... +al8k + a

in the complex plane. As each node of the (N= 2k)-node shuffle-exchange graph
corresponds to a k-bit binary string, it is possible to use the map to embed the

shuffle-exchange graph in the complex plane. For example, we have done this for
the 32-node shuffle-exchange graph (whence k=5) in Figure 1-1. As is usual, we
have drawn the shuffle edges with solid lines and the exchange edges with dashed
lines. For simplicity, each node is labeled with its value instead of its 5-bit binary

string. (By the value of a node, we mean the numerical value of the associated

k-bit binary string.)

9
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+1i

12 . °"...... . \, k

-2li

-2" i ___ ..... -__ _ _ ......... ___ __

-2 -1 0 +1 +2

Figure 1-1: The complex plane diagram for the 32-node
shuffle-exchange graph. (Taken from [H L80J.)

1.2.2 Properties

Examination of Figure 1-1 indicates that the complex plane diagram has some
very interesting properties. First, it is apparent that the shuffle edges occur in
cycles (which we call necklaces) which are symmetrically placed about the origin.
This phenomenon is easily explained by the following identity:

k 2"

8 k P(ak- I .ao) = ak18kk + ak.28kk l +"" + al8k2 + ao8k

= ak.  +... + aO8 k + ak

= p(ak.2.., aoak. 1).

Thus traversal of a shuffle edge corresponds to a 27r/k rotation in the complex
plane.

Except for degenerate cases, the preceding identity also indicates that each
necklace is composed of k nodes, each a cyclic shift of the other. Such necklaces
are called full necklaces. Degcncrate necklaces contain fewer than k nodes and,
because they must have some symmetry, are mapped entirely to the origin cif the

10
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complex plane diagram. For example, {00000} and 10101, 1010} are degenerate
U necklaces while both {101, 011, 1101 and {11100, 11001, 10011, 00111, 01110) are

full.

It will often be convenient to refer to a necklace by one of its nodes. In
particular, we will use the notation <w> to indicate the necklace generated by w.
This is simply the collection of cyclic shifts if w. For example, the necklace
generated by 101 is <101> = {101, 011, 110.

Exchange edges are also embedded in a very regular fashion by the complex
plane diagram. In fact, each exchange edge is embedded as a horizontal line
segment of unit length. This phenomenon is explained by the identity

p(ak....aO) + 1 = ak.18kk +... + aI8k + 1

= p(ak.... all).

In some cases, several exchange edges are contained in the same horizontal line
of the diagram. Such lines are called levels. For example, there are 9 levels in the

diagram of the 32-node shuffle-exchange graph shown in Figure 1-1. We will use
the properties of levels in Chapter 2 to find an O(N/log/ 2A)-area layout for the
N-node shuffle-exchange graph. They will also be used in Chapter 4 to find good
practical layouts for small shuffle-exchange graphs.

1.2.3 An O(N 2/logN)-Area Layout

In [HL80], Hoey and Leiserson showed how to use the complex plane diagram
to construct an O(N2/logN)-area layout for the N-node shuffle-exchange graph.
Their method was very involved, however, and we have chosen not to include it
here. The basic idea is to use the structural properties of the complex plane

diagram to find an O(N/log/ 2N)-separator for the N-node shuffle-exchange graph
whenever N is of the form 22' for some r>0. The separator can then used to
construct an O(N 2/logN)-area layout by using Leiserson's general layout technique
for graphs with known separators [L80a].

Shortly after writing [HL80, Hoey and Leiserson found a far simpler

O(N/IogN)-area layout for the N-node shuffle exchange graph which was, in
addition, valid for all N. By the that time, however, we (as well as several others)
had also observed that the complex plane diagram could be used to find a simple
layout for the shtfme-exchange graph. This layout is described in Chapter 2.
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CHAPTER 2

LAYOUTS BASED ON THE COMPLEX PLANE DIAGRAM

In this chapter, we present several layouts of the shuffle-exchange graph which
are based on Hoey and Leiserson's complex plane diagram. We commence in
section 2.1 with a straightforward O(N 2/logN)-area layout of the N-node shuffle-
exchange graph. As we mentioned in Chapter 1, this layout has also been
discovered by many others (including Hoey and Leiserson). In section 2.2, we
show how the layout can be modified so as to require only O(N2/log 312N) area.
The latter layout was also discovered independently by Steinberg and Rodeh
[SR80b]. We conclude the chapter by menticaing an additional O(N2/log-"2 N)-

area layout as well as a layout which might require even less area.

4 2.1 A Straightforward O(N2/logN)-Area Layout

In this section, we describe a straightforward layout of the shuffle-exchange
graph which requires only O(N2/logN) area. The layout is formed from a grid of
levels and necklaces which we refer to as the level-necklace grid Each row of the
grid corresponds to a level of the complex plane diagram. The columns are

divided into consecutive column pairs, each pair corresponding to a necklace. In
particular, the leftmost column of each column pair corresponds to that part of the
necklace which is contained in the left half of the complex plane. Similarly, the
rightmost column corresponds to the part of the necklace contained in the right
half of the complex plane. We assume that the rows are ordered from top to
bottom so as to be consistent with the natural ordering of the levels in the complex
plane but (for the time being) place no restrictions on the left-to-right order of the
necklaces.

Each node of the shuffle-exchange graph is placed at the intersection of the row
and column of the grid which correspond to the level and part of the necklace (left
half or right halo to which it belongs in the complex plane diagram. For example,

we have done this for a random ordering of the necklaces of the 32-node shuffle-

exchange graph in Figure 2-1.
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necklaces

<3> <7> <31><11> <1> <5> <0> <15>

6 7
2 --- -- - - -- - -

3 14 2 153L

22 4. 5 23
4 P

11 10
levels 5 -01

12 19 31 13 1 18 0 30

2 1 20
7 - -- - ._ -

26 8 9 27
8 -: 17 28 16 [ 29

24 25

Figure 2-1: A level-necklace grid for the 32-node shuffle-exchange graph.

Notice that we used just one vertical track to embed the necklaces <0> and (31>

in the grid. As each necklace contains just one node, it is clear that this is

sufficient. In general, necklaces which are mapped to the origin by the complex
plane diagram are a nuisance since they become lumped together in a single point
of the level-necklace grid. Fortunately, there are relatively few such node.. In
particular, Hoey and Leiserson showed the following.

Lemma 2-1 (Hoey and Leiserson [HL80]): At most O(N/logN) nodes of the N-
node shuffle-exchange graph are mapped to the origin of the complex plane diagram.

Proof- Every node which is mapped to the origin of the complex plane diagram

is adjacent (via an exchange edge) to a node at position (1,0) or (-1,0). Any node
which is not mapped to the origin is contained in some full necklace, at most two
nodes of which are contained in positions (1,0) or (-1,0). Thus for every pair of

nodes which are mapped to the origin, there are at least k = logN nodes which
are not mapped to the origin. Thus at most O(N/k) = O(N/logN) nodes can be
mapped to the origin D3

Since at most O(N/logN) nodes are mapped to the origin, we can (for the time
being) ignore them. Th-ey can always be inserted later at a cost of at most

O(N/logN) additional vertical and horizontal tracks. Since any layout of the

shuffle-exchange graph which we will consider will have at least Q(N/ogN) vertical

13



and horizontal tracks, the added tracks can increase the area of the final layout by
at most a constant factor. We will also use this strategy in Chapter 3 when we

ignore several O(N/logN)-sized sets of nodes.

Since each full necklace contains at most k = logN nodes, it is easy to see that
the N-node shuffle-exchange graph has at most O(N/logN) full necklaces. Thus at
most O(N/logN) vertical tracks are needed to embed all of the shuffle edges in the
level-necklace grid'. It is also easy to show that at most N horizontal tracks are
needed to embed all of the exchange edges (one track is used for each exchange
edge). Thus the total area of the layout for the N-node shuffle-exchange graph is
O(N2/log). As an example, we have added the edges of the 32-node shuffle-
exchange graph to the level-necklace grid in Figure 2-1 to produce the layout
shown in Figure 2-2. Note that we have omitted <0> and <31> in this layout since
they are mapped to the origin of the complex plane diagram.

necklaces

<3> <7> <11> <i> <5> <15>

1 .6

2 (14

3 412.2 1
4t - -- _ 15

4,,---- -410

levels 5 H 13 30

."". 6 -4- . . . 021 20

7 26

8 9

'-8 2 8 2 9

17 16
9I

24 25

Figure 2-2: Layo.l produccdfrotn ihe level-necklace grid.lio.', in Figure 2-1.
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